Abstract

In this paper, an off-line double density discrete wavelet transform based de-noising and baseline wandering removal methods are proposed. Different levels decomposition is used depending upon the noise level, so as to give a better result. When the noise level is low, three levels decomposition is used. When the noise level is medium, four levels decomposition is used. When the noise level is high, five levels decomposition is used. Soft threshold technique is applied to each set of wavelet detail coefficients with different noise level. Donoho's estimator is used as a threshold for each set of wavelet detail coefficients. The results are compared with other classical filters and improvement of signal to noise ratio is discussed. Using the proposed method the output signal to noise ratio is 19.7628 dB for an input signal to noise ratio of -7.11 dB. This is much higher than other methods available in the literature. Baseline wandering removal is done by using double density discrete wavelet approximation coefficients of the whole signal. This is an unsupervised method allowing the process to be used in off-line automatic analysis of electrocardiogram. The results are more accurate than other methods with less effort.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.