Abstract

Optical imaging methods on ex-vivo hearts have had large impact in furthering our understanding of cardiac electrophysiology. One common problem in this method is a baseline wandering of the fluorescence signals over time, caused by dye photo-bleaching, small variation of the excitation light source, or other similar artifacts. Due to its relative magnitude, the removal of baseline wandering can be a nontrivial task and has major implications for analyzing important physiological dynamics such as traveling waves and alternans. Here we present a computational technique for the removal of such baseline wandering based on Proportional-Integral-Derivative (PID) closed loop feedback. The PID method applied a continuous control stimulus to the input V m based on an error value which is defined by Euclidean distance from a pre-computed setpoint in phase space. We quantify and validate the PID control method by adding a linear combination of arbitrary sinusoidal drift, of frequency less than the signal pacing frequency, to the system signal V m . The PID control loop effectively removed the baseline wandering with minimal degradation to the input V m , and thus provides a viable tool for baseline wandering removal when implemented in an appropriate phase space. The computational simplicity of the method also lends itself to implementation in embedded systems, such as Arduinos and Raspberry-Pis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.