Abstract

Vascular calcifications constitute an important risk factor for mortality in chronic kidney disease patients. A better knowledge of physiopathologic phenomena responsible for vascular mineralization leads to emerging biological markers of vascular calcifications. In calcified arteries, presence of bone matrix as well as osteoblast cells suggest that vascular calcification is an active and highly regulated process. In uremic environment, vascular smooth muscle cells can transdifferentiate into osteoblast-like cells. The OPG–RANK–RANKL system is clearly of central significance in controlling vascular calcifications as in bone metabolism. Converging results suggest that circulating OPG determination should be a relevant marker of calcifications. Impairment in inhibitory system such as Matrix Gla Protein and fetuin-A promotes bone matrix calcification. Finally, FGF-23, an early and sensitive marker of bone and mineral disorders in chronic kidney disease patients, appears as a promising marker.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.