Abstract

Endoplasmic reticulum (ER) stress can initiate autophagy via unfolded protein response (UPR). As a key downstream gene of UPR, DDIT3/CHOP is expressed in chondrocytes. However, the regulation mechanism of DDIT3/CHOP on autophagy in chondrocytes remains unclear. In this study, the expression levels of autophagic markers Beclin1 and LC3B were found to decrease while p62 increase in the tibial growth plate and costal primary chondrocytes from DDIT3/CHOP KO mice. In vitro, overexpressing DDIT3/CHOP induced autophagy in ATDC5 chondrocytes, displaying an elevated immunofluorescence signal of LC3B and elevated numbers of autophagosomes and autolysosomes. Analysis of the gain- and loss-of-function indicated that the protein level of Beclin1 and the ratio of LC3BII/I increased in DDIT3/CHOP overexpression cells, whereas decreased in DDIT3/CHOP knockdown cells. The decreased level of p62 and additional accumulation of LC3BII caused by chloroquine (CQ) further indicated that DDIT3/CHOP enhanced autophagic flux. Mechanistically, we found that DDIT3/CHOP binds directly to the promoter of SIRT1 to promote its expression by CHIP, qRT-PCR, and Western blot analysis. In addition, SIRT1 enhanced autophagic activity in ATDC5 cells, and inhibition or activation of SIRT1 partially reversed the effect of overexpressing or downregulating DDIT3/CHOP on autophagy. Furthermore, AKT signaling was found to be responsible for DDIT3/CHOP-regulated autophagy in ATDC5 cells. SIRT1 knockdown reversed the effect of DDIT3/CHOP overexpression on AKT signaling. In conclusion, our data clarifies that DDIT3/CHOP promotes autophagy in ATDC5 chondrocytes through the SIRT1-AKT pathway. These results were also confirmed in the primary chondrocytes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.