Abstract
Autophagy dysfunction has been reported in osteoarthritis (OA) cartilage. The objective of this study was to investigate the role of microRNA-155 (miR-155), which is overexpressed in OA, in the regulation of autophagy in human chondrocytes. Rapamycin (50nM) and 2-deoxyglucose (2-DG) (5mM) were used to stimulate autophagy in primary human articular chondrocytes and in the T/C28a2 human chondrocyte cell line. Cells were transfected with LNA GapmeR or mimic specific for miR-155 and autophagy flux was assessed by LC3 western blotting and by Cyto-ID(®) dye quantification in autophagic vacuoles. Expression of predicted miR-155 targets in the autophagy pathway were analyzed by real-time PCR and western blotting. Autophagy flux induced by rapamycin and 2-DG was significantly increased by miR-155 LNA, and significantly decreased after miR-155 mimic transfection in T/C28a2 cells and in human primary chondrocytes. These effects of miR-155 on autophagy were related to suppression of gene and protein expression of key autophagy regulators including Ulk1, FoxO3, Atg14, Atg5, Atg3, Gabarapl1, and Map1lc3. MiR-155 is an inhibitor of autophagy in chondrocytes and contributes to the autophagy defects in OA.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.