Abstract
All first-generation large-scale gravitational wave detectors are operated at the dark fringe and use a heterodyne readout employing radio frequency (RF) modulation–demodulation techniques. However, the experience in the currently running interferometers reveals several problems connected with a heterodyne readout, of which phase noise of the RF modulation is the most serious one. A homodyne detection scheme (DC-readout), using the highly stabilized and filtered carrier light as a local oscillator for the readout, is considered to be a favourable alternative. Recently a DC-readout scheme has been implemented on the GEO 600 detector. We describe the results of first measurements and give a comparison of the performance achieved with homodyne and heterodyne readout. The implications of the combined use of DC-readout and signal recycling are considered.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have