Abstract

David Jenkinson was one of the most influential soil scientists of his generation, bringing new insights into the transformations of organic matter and nitrogen in soil. He spent the majority of his career at Rothamsted Research, Harpenden, UK. His studies were influential regarding the role of soil carbon stocks in the context of climate change and the role of nitrogen fertilizer in delivering adequate supplies of food for a growing world population. His research encompassed both fundamental studies on soil processes and immensely practical applications of this knowledge, often utilizing the Rothamsted long-term experiments that have run for over 170 years. He is particularly well known for his development of a method for determining the quantity of organic carbon held in the cells of living micro-organisms in soil, termed the ‘soil microbial biomass’. This breakthrough opened the way for a new wave of soil biological research. David developed one of the earliest computer models for the turnover of organic carbon in soil, known as the Rothamsted Carbon Model, RothC. This model, conceptually very simple, has proved highly successful in simulating and predicting changes in soil organic carbon (SOC) content under different management practices worldwide, being used by over 2600 people in 115 countries. His research using the stable isotope of nitrogen, 15 N, in large-scale field experiments drew attention to the factors leading to inefficiencies in the use of nitrogen fertilizer but also demonstrated that it is possible to achieve high efficiency if good agricultural management practices are followed. It also demonstrated, more clearly than previously, the great importance of soil organic matter as a source of nitrogen for crops and the role of the soil microbial biomass both in immobilizing a proportion of applied fertilizer nitrogen and also in causing confusion in the interpretation of such experiments. By calculating nitrogen budgets for the Rothamsted long-term experiments he quantified the deposition of nitrogen compounds from atmosphere to land, laying foundations for later studies concerning the ecological and agricultural impacts of this significant input of nitrogen.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call