Abstract

Soil microbial biomass (SMB), as the source and sink of soil nutrients, and its stoichiometry play a key role in soil organic carbon (SOC) and nitrogen (N) mineralization. The objective of this study was to investigate the responses of SOC and N mineralization to changes in microbial biomass and SOC, N, and phosphorus (P) stoichiometry resulted from long-term fertilization regimes. Soil was sampled from a rice-wheat rotation system subjected to 37 years of nine fertilization treatments with different nutrient input amounts: control (CK), N alone, N combined with mineral phosphorus (NP), NP plus potassium (NPK), manure alone (M), and M combined with N (MN), NP (MNP), NPK (MNPK), and a higher rate of M with NPK (hMNPK). The sampled soil was incubated for the determination of SOC and N mineralization, C, N, and P stoichiometry of soil and SMB, and associated soil enzymes related to C and N cycling. Relative to the CK and treatments with mineral fertilizers, treatments with manure (M, MN, MNP, MNPK, and hMNPK) significantly increased SOC and N mineralization by 48–78% and 54–97%, respectively. Microbial metabolic quotient (qCO2) decreased by 32–55% in treatments with manure compared to the N and NP treatments, but showed no effect on the qCO2 when compared to the NPK treatment. The leucine amino peptidase (LAP) enzyme showed significant positive correlation with SOC and N mineralization, and negatively related to the qCO2. Significantly negative correlations were also observed between SOC and N mineralization and soil C:P and N:P ratio, as well as microbial biomass SMBC:SMBP and SMBN:SMBP stoichiometry, respectively. However, the availability of N and P had limited effects on the qCO2 after reaching a certain value (0.69–0.72 mg CO2-C g−1 MBC h−1). Lower soil elemental (C:P and N:P) and microbial biomass stoichiometry (SMBC:SMBP and SMBN:SMBP) and increase of LAP resulted from combined application of manure and mineral fertilizers, accelerated SOC, and N mineralization. Mineral nutrient input with manure amendments could be an optimal strategy to meet the microbial stoichiometric demands and enhance nutrient availability for crops in agricultural ecosystems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call