Abstract

A large imbalance in soil nitrogen (N) and phosphorus (P) inputs induced by anthropogenic activities is anticipated to profoundly influence soil carbon (C) budgets in salt marshes. In this study, we hypothesized that imbalances in the nitrogen–phosphorus (N–P) input would result in the nonlinear response of soil organic carbon (SOC) content, fractions and mineralization to the N–P input ratio. We applied three N–P input ratios (low (5:1), medium (15:1), high (45:1)) in a salt marsh of the Yellow River Delta (YRD) for four years (in which N added increased from 8.67 to 26.01 g N m−2 y−1 and P added decreased from 1.73 to 0.58 g P m−2 y−1) and quantified their impacts on SOC fractions and SOC mineralisation. The control treatment did not receive fertilization. The results showed that the N and P input led to overall increases in the availability of soil nutrients (i.e., inorganic N (IN) and available P (AP)), stimulation of plant biomass and changes of microbial community structure (i.e., γ- and δ-Proteobacteria and Acidobacteria). N and P input increased soil dissolved organic carbon (DOC) and decreased aromatic DOC components through improving N availability and stimulating plant growth. Notably, though, there may be a threshold N–P input ratio between 15:1 and 45:1 that, once crossed, triggers the loss of SOC. Appropriate increase in N availability induced by low and medium N-P input ratios would stimulate the SOC mineralization. However, excessive N-P input ratio would reduce SOC mineralization. Path analysis indicated that N–P input ratios dominantly regulate SOC mineralisation by changing soil DOC and microbial biomass (MBC)contents and microbial community structure. Thus, we speculate that the continuous increase in N input causes a growing N–P imbalance that reduces SOC stocks, despite a reduction in SOC mineralisation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call