Abstract

Davallia mariesii Moore (Drynaria rhizome extract (DRE)) is widely known for its efficacy in treating inflammation, arteriosclerosis, and bone injuries. This study evaluated whether treatment with DRE inhibited FcɛRI-mediated allergic responses in the RBL-2H3 mast cells and investigated the early- and late-phase mechanisms by which DRE exerts its antiallergic effects. IgE anti-DNP/DNP-HSA-sensitized RBL-2H3 mast cells were tested for cytotoxicity to DRE, followed by the assessment of β-hexosaminidase release. We measured the amounts of inflammatory mediators (e.g., histamine, PGD2, TNF-α, IL-4, and IL-6) and examined the expression of genes involved in arachidonate and FcεRI signaling pathways. In addition, we confirmed the antiallergic effects of DRE on passive cutaneous anaphylaxis (PCA) in mice. DRE inhibited RBL-2H3 mast cell degranulation and production of allergic mediators in them. In early allergic responses, DRE reduced expression of FcεRI signaling-related genes (e.g., Syk, Lyn, and Fyn) and extracellular signal-regulated kinase phosphorylation in mast cells. In late allergic responses, DRE reduced PGD2 release and COX-2 expression and cPLA2 phosphorylation in FcɛRI-mediated mast cells. Lastly, 250–500 mg/kg DRE significantly attenuated the IgE-induced PCA reaction in mice. These findings provide novel information on the molecular mechanisms underlying the antiallergic effects of DRE in FcɛRI-mediated allergic responses.

Highlights

  • Allergies have become a worldwide clinical health problem, and their incidence is rapidly increasing due to various factors [1]

  • We examined the effect of DRE supplementation on proinflammatory cytokines, including TNF-α, IL-4, and IL-6, in IgE-mediated RBL-2H3 mast cells

  • Cytokines, and other mediators because of degranulation induced by allergic reactions [12]. β-Hexosaminidase released as a marker of degranulation from mast cells provides a good indicator of the degree of allergic reactions [19]

Read more

Summary

Introduction

Allergies have become a worldwide clinical health problem, and their incidence is rapidly increasing due to various factors [1]. Many drugs derived from chemical compounds have been developed to treat allergies, but in some cases, they induce side effects or exhibit low efficacy [5]. Davallia mariesii Moore, known as Drynaria rhizome (DR) (“gol-se-bo” in Korean and “gu-sui-bu” in Chinese), is a traditional Korean and Chinese medicine known for its efficacy in treating inflammation, osteoporosis, traumatic brain injury, and arteriosclerosis [7, 8]. It is commonly used for treating orthopedic disorders and has been claimed to have therapeutic effects on bone healing [9]. The cellular signaling mechanisms underlying its antiallergic effects have not been studied

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call