Abstract
Mechanical twinning in polycrystalline quartz was investigated in situ with time-of-flight neutron diffraction and a strain diffractometer. Dauphine twinning is highly temperature sensitive. It initiates at a macroscopic differential stress of 50–100 MPa and, at 500°C, saturates at 400 MPa. From normalized diffraction intensities the patterns of preferred orientation (or texture) can be inferred. They indicate a partial reversal of twinning during unloading. The remaining twins impose residual stresses corresponding to elastic strains of 300–400 microstrain. Progressive twinning on loading and reversal during unloading, as well as the temperature dependence, can be reproduced with finite element model simulations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.