Abstract

Clinically, red blood cell abnormalities are closely related to tumor diseases, red blood cell diseases, internal medicine, and other diseases. Red blood cell classification is the key to detecting red blood cell abnormalities. Traditional red blood cell classification is done manually by doctors, which requires a lot of manpower produces subjective results. This paper proposes an Attention-based Residual Feature Pyramid Network (ARFPN) to classify 14 types of red blood cells to assist the diagnosis of related diseases. The model performs classification directly on the entire red blood cell image. Meanwhile, a spatial attention mechanism and channel attention mechanism are combined with residual units to improve the expression of category-related features and achieve accurate extraction of features. Besides, the RoI align method is used to reduce the loss of spatial symmetry and improve classification accuracy. 588 red blood cell images are used to train and verify the effectiveness of the proposed method. The Channel Attention Residual Feature Pyramid Network (C-ARFPN) model achieves an mAP of 86%; the Channel and Spatial Attention Residual Feature Pyramid Network (CS-ARFPN) model achieves an mAP of 86.9%. The experimental results indicate that our method can classify more red blood cell types and better adapt to the needs of doctors, thus reducing the doctor's time and improving the diagnosis efficiency.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.