Abstract
Convolutional neural networks (CNNs) produce promising results when applied to a wide range of medical imaging tasks including the segmentation of tissue structures. However, segmentation is particularly challenging when the target structures are small with respect to the complete image data and exhibit substantial curvature as in the case of coronary arteries in computed tomography angiography (CTA). Therefore, we evaluated the impact of data representation of tubular structures on the segmentation performance of CNNs with U-Net architecture in terms of the resulting Dice coefficients and Hausdorff distances. For this purpose, we considered 2D and 3D input data in cross-sectional and Cartesian representations. We found that the data representation can have a substantial impact on segmentation results with Dice coefficients ranging from 60% to 82% reaching values similar to those of human expert annotations used for training and Hausdorff distances ranging from 1.38 mm to 5.90 mm. Our results indicate that a 3D cross-sectional data representation is preferable for segmentation of thin tubular structures.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.