Abstract

Antimicrobial resistance is a major worldwide public health problem. The misuse of antimicrobial agents and the delay in spotting emerging and outbreak resistances in current biosurveillance and monitoring systems are regarded by health bodies as underlying causes of increasing resistance. In this thesis, we explore novel methods to monitor and analyze antimicrobial resistance trends to improve existing biosurveillance systems. More specifically, we investigate the use of semantic technologies to foster integration and interoperability of interinstitutional and cross-border microbiology laboratory databases. Additionally, we research an original, fully data-driven trend analysis method based on trend extraction and machine learning forecasting to enhance antimicrobial resistance analyses.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.