Abstract

PurposeThis study aims to develop a data fusion method for powder-bed fusion (PBF) process monitoring based on process image information. The data fusion method can help improve process condition identification performance, which can provide guidance for further PBF process monitoring and control system development.Design/methodology/approachDesign of reliable process monitoring systems is an essential approach to solve PBF built quality. A data fusion framework based on support vector machine (SVM), convolutional neural network (CNN) and Dempster-Shafer (D-S) evidence theory are proposed in the study. The process images which include the information of melt pool, plume and spatters were acquired by a high-speed camera. The features were extracted based on an appropriate image processing method. The three feature vectors corresponding to the three objects, respectively, were used as the inputs of SVM classifiers for process condition identification. Moreover, raw images were also used as the input of a CNN classifier for process condition identification. Then, the information fusion of the three SVM classifiers and the CNN classifier by an improved D-S evidence theory was studied.FindingsThe results demonstrate that the sensitivity of information sources is different for different condition identification. The feature fusion based on D-S evidence theory can improve the classification performance, with feature fusion and classifier fusion, the accuracy of condition identification is improved more than 20%.Originality/valueAn improved D-S evidence theory is proposed for PBF process data fusion monitoring, which is promising for the development of reliable PBF process monitoring systems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.