Abstract

Auxiliary information sources, a subset of target recognition data sources, play a significant role in target recognition. The reliability and importance of these sources can vary, thereby affecting the effectiveness of the data provided. Consequently, it is essential to integrate these auxiliary information sources prior to their utilization for identification. The Dempster-Shafer (DS) evidence theory, a well-established data-fusion method, offers distinct advantages in handling and combining uncertain information. In cases where conflicting evidence sources and minimal disparities in fundamental probability allocation are present, the implementation of DS evidence theory may demonstrate deficiencies. To address these concerns, this study refined DS evidence theory by introducing the notion of invalid evidence sources and determining the similarity weight of evidence sources through the Pearson correlation coefficient, reflecting the credibility of the evidence. The significance of evidence is characterized by entropy weights, taking into account the uncertainty of the evidence source. The proposed asymptotic adjustment compression function adjusts the basic probability allocation of evidence sources using comprehensive weights, leading to symmetric compression and control of the influence of evidence sources in data fusion. The simulation results and their application in ship target recognition demonstrate that the proposed method successfully incorporates basic probability allocation calculations for ship targets in various environments. In addition, the method effectively integrates data from multiple auxiliary information sources to produce accurate fusion results within an acceptable margin of error, thus validating its efficacy. The superiority of the proposed method is proved by comparing it with other methods that use the calculated weights to weight the basic probability allocation of the evidence sources.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.