Abstract

The present study elaborates three-dimensional (3D) thermally radiative flow of carbon nanotubes dispersed in water with Darcy–Forchheimer porous space. A bidirectional linear stretchable sheet is used to generate the flow. Darcy–Forchheimer relation specifies porous space. Single-wall carbon nanotubes and multi-wall carbon nanotubes are accounted. Solutions development is due to optimal homotopy analysis technique. Optimal data of sundry variables are obtained. The optimal solution interpretations of velocities and temperature are interpreted via plots. Physical quantities are also elaborated. Our results reveal that thermal field against radiation and temperature ratio parameter is enhanced.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call