Abstract

The purpose of this work was to determine the toughening mechanisms in interlayered quasi-isotropic glass–fibre reinforced polyester resin (GFRP) composites. Particles of polyethylene and aluminium tri-hydrate, Al(OH)3, were mixed with the polyester resin prior to laminating with woven E-glass-fibre cloth. Mode-I, mode-II, and impact tests were performed to determine critical strain energy-release rates (GIc and GIIc), absorbed energy and residual compressive strength for the laminates with and without particulate additions. Mode-I and mode-II delamination toughness were characterized using double cantilever beam (DCB) and end-notched flexure (ENF) specimens, respectively, and the delaminated surfaces of specimens were examined using scanning electron microscopy (SEM) to investigate the interlaminar morphology after fracture. The results indicate that the interlaminar toughness (GIc and GIIc), absorbed energy and residual compressive strength values of the GFRP composite increases with increase of particle content. The improved behaviour of particle containing GFRP is linked to stress-concentration induced plastic deformation and crack bridging. Polyethylene particles increase the toughness of the matrix material, which results in composites with higher values of mode-I, mode-II and impact than the composites with aluminium tri-hydrate particles. © 1998 Chapman & Hall

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.