Abstract

This paper address the challenges in using traditional film inserts specific to hot gas torch (HGT) assisted and in-situ consolidated automated fibre placement (AFP) manufactured double cantilever beam (DCB) and end notched flexure (ENF) specimens using carbon fibre (CF) reinforced polyetheretherketone (PEEK) prepregs. Traditional films suffer from thermal degradation, wrinkling and distortion under the consolidation roller. In this study, steel shim inserts with different thicknesses (25 and 50 µm) were used to manufacture the DCB and ENF specimens for fracture toughness evaluation. The processing parameters for in-situ consolidation were selected based on prior optimisation studies on short beam tests. In-situ consolidated specimens suffer from high void content which can affect the mechanical properties. Hence, optical micrography was used to investigate on the void contents in the manufactured specimens. Microhardness measurement is proposed as an AFP manufacturing quality assessment tool for DCB and ENF specimens which were taken from different regions of composite laminates. A manufacturing methodology for producing high quality DCB and ENF specimens by hot gas torch assisted in-situ consolidation using AFP is proposed in this paper that provide comparable results with those specimens manufactured using traditional methods.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call