Abstract

A damage localization algorithm based on Operational Deformed Shapes and known as Interpolation Damage Detection Method, is herein applied to the finite element model of a cable stayed bridge for detecting and localizing damages in the stays and the supporting steel beams under the bridge deck. Frequency Response Functions have been calculated basing on the responses of the bridge model to low intensity seismic excitations and used to recover the Operational Deformed Shapes both in the transversal and in the vertical direction. The analyses have been carried in the undamaged configuration and repeated in several different damaged configurations. Results show that the method is able to detect the damage and its correct location, provided an accurate estimation of the Operational Deformed Shapes is available. Furthermore, the damage detection algorithm results effective also when damages coexist at the same time at several location of the cable-stayed bridge members.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call