Abstract

This article presents a basic experimental technique and simplified finite element (FE)-based models for the detection, localization, and quantification of impact damage in composite beams around the barely visible impact damage level. Detection of damage is carried out by shift in modal parameters. Localization of damage is done by a topology optimization tool, which showed that correct damage locations can be found rather efficiently for low-level damage. The novelty of this article is that we develop an all in one package dedicated to impact identification by modal analysis. The damaged zones in the FE models are updated by reducing the most sensitive material property, in order to improve the experimental/ numerical correlation of the frequency response functions. These approximate damage models (in terms of equivalent rigidity) give us a simple degradation factor that can serve as a warning regarding the safety of the structure.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call