Abstract

Familial Parkinson’s disease and other neurodegenerative diseases known as synucleinopathies are strongly associated with α-Synuclein (αS) missense mutations. One of these mutations, E46K, had been hypothesized to increase the electrostatic attraction of αS to neuronal vesicle membranes due to positively charged lysine that attracts negatively charged phospholipid head groups. Here, we confirm the biochemical mechanism of E46K through four compound mutants, each with three replacements with lysine on a cytosol-exposed position of the αS alpha helix. We show that the cytosolic αS to membrane-bound αS ratios are significantly lower, and that the phosphorylation rates of serine-129-a pathological marker-are pronouncedly higher for the mutants than for wild type. This experiment addresses the previous knowledge gap in the understanding of basic amino acid replacements in cytosol-exposed positions of αS. Importantly, the validated effect of cytosol-exposed lysine residues has implications for exploring the mechanism of pathogenesis of αS mutants in familial Parkinson’s disease.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.