Abstract

Melatonin, an endogenously produced neurohormone secreted mainly by the pineal gland, has a variety of physiological functions and neuroprotective effects. Saturated fatty acids (SFAs) have been known to induce neurotoxicity and oxidative stress in central nervous system injuries and neurodegenerative pathologies. However, the effect of melatonin on SFAs-induced cytotoxicity in astroglial cells, if any, has remained to be explored. This study reports that in primary cultured astroglial cells, melatonin significantly attenuated palmitic acid (PA)-induced cytotoxicity in a concentration- and time-dependent manner. Additionally, melatonin effectively suppressed PA-induced reactive oxygen species generation and prevented PA-induced apoptosis whereby the rise in Bax/Bcl-2 ratio and caspase-3 activation in astroglial cells was inhibited. However, it did not appear to exert an obvious effect on PA-induced intracellular calcium overload. Luzindole, a nonselective melatonin receptor antagonist, attenuated melatonin's promotion effect of cell survival and Stat3 phosphorylation, indicating that melatonin exerts its protective property in astroglial cells, at least in part, through the activation of membrane receptors and then Stat3 signaling pathway. Finally, melatonin had an inhibitory effect on the pro-inflammatory cytokine gene expression. The results suggest that melatonin may be an effective cytoprotective agent against PA-based cytotoxicity through modulating cell survival and inflammatory response in astroglial cells.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call