Abstract
The fidelity of immune responses depends on timely controlled and selective mRNA degradation that is largely driven by RNA-binding proteins (RBPs). It remains unclear whether stochastic or directed processes govern the selection of an individual mRNA molecule for degradation. Using human and mouse cells, we show that tristetraprolin (TTP, also known as ZFP36), an essential anti-inflammatory RBP, destabilizes target mRNAs via a hierarchical molecular assembly. The assembly formation strictly relies on the interaction of TTP with RNA. The TTP homolog ZFP36L1 exhibits similar requirements, indicating a broader relevance of this regulatory program. Unexpectedly, the assembly of the cytoplasmic mRNA-destabilization complex is licensed in the nucleus by TTP binding to pre-mRNA, which we identify as the principal TTP target rather than mRNA. Hence, the fate of an inflammation-induced mRNA is decided concomitantly with its synthesis. This mechanism prevents the translation of excessive and potentially harmful inflammation mediators, irrespective of transcription.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have