Abstract
HighlightsThe cutting mechanism of sugarcane stalks using single-point clamping was analyzed.Physical properties, chemical composition, and maximum cutting force of sugarcane were explored.Strong and complicated correlations between physical properties and chemical composition were established.Stress distributions in sugarcane stalks and the cutting blade were predicted using a finite element model.Abstract. Research on the cutting characteristics of sugarcane stalks is of great significance to improve harvest mechanization. In this study, perpendicular cutting of sugarcane stalks at six different nodes and internodes along the stalk was tested using a single-point clamping method at three cutting speeds (30, 40, and 50 mm min-1). The physical properties and chemical composition were also measured. At the 50 mm min-1 cutting speed, the maximum cutting forces at nodes and internodes upward along the stalk decreased gradually from 810 to 530 N and from 600 to 440 N, respectively. The maximum cutting force was positively correlated with the cutting speed at the same position. Differences in the microstructures of nodes, internodes, and epidermis were revealed by SEM micrographs. The physical properties and chemical composition of the stalks showed significant correlations. Correlation analysis was used to clarify the complicated interrelationships among these independent variables and revealed the interacting mechanism between physical properties and chemical composition. A finite element model was established to simulate the sugarcane cutting process. Results showed that the simulated cutting resistance of the blade was close to that in the experiments. The maximum Von Mises stress of the sugarcane stalk and blade in the cutting process were about 23.34 and 254.17 MPa, respectively. The results of this study provide guidance for designing and optimizing base-cutters of sugarcane harvesters and similar cutting equipment. Keywords: Chemical composition, Correlation analysis, Cutting characteristics, Microstructure, Physical properties, Simulation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.