Abstract

The development of rapid, accurate, cost effective methods to determine soil physical and chemical properties is important for sustainable land management. In the last two to three decades, the interest in using visible and near infrared (Vis-NIR) spectroscopy as an alternative method for determining soil properties has increased. To obtain reliable predictions of soil properties, multivariate calibration techniques such as Partial Least Squares Regression (PLSR) are commonly used to correlate the spectra with the chemical, physical and mineralogical properties of soils.The objective of the paper was to assess the potential of Vis-NIR spectroscopy coupled with PLSR to determine soil chemical and physical properties such as organic carbon (SOC), sand, silt, clay, and calcium carbonate (CaCO3) contents in a sample site of southern Italy.Spectral curves showed that the soils could be spectrally separable on the basis of chemical and physical properties. PLSR calibration models were derived for each of the soil properties and were validated with an independent data set. The optimum number of factors to be retained in the calibration models was determined by leave-one-out cross-validation. The accuracy of the calibration and validation models for the different soil properties was evaluated with the coefficient of determination (R2) and the root mean squared error (RMSE). The results showed that predictions were satisfactory for all soil properties analyzed with high values of R2 > 80.A combination of Vis-NIR spectroscopy and multivariate statistical techniques, therefore, can be used as a rapid, low cost and quantitative means of characterizing the soils of southern Italy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call