Abstract

Soil physical and chemical properties do affect forests (plant) growth and soil management systems. Some key and important physical and chemical properties of soil are mineral content, texture, cation exchange capacity, bulk density, structure, porosity, organic matter content, carbon-to-ni- trogen ratio, color, depth, fertility, and pH. Sustainable forest management and soil quality parameters may include such terrestrial functions as carbon sequestration, land use management, erosion control, plant productivity and a soil’s capacity to produce biomass. Sustainable forest management consistently requires enhancement of both the chemical and physical properties of forest soil quality. Land use and change in land use as well as forest management systems, are main indicators that may determine which soil properties induce changes in any forest site. Forest management and crop yield are key issues of environmental/productivity quality in addressing carbon mitigation and absorption in plant species and agricultural productivity. Five distinct forest soils under major physical properties and chemical properties were evaluated at the forest ecology laboratory. The results were determined while considering regional forest management regimes. Correlation analysis in Deqing forest soil showed that higher correlation of NMC at 25-50cm depth, BD at 0-25cm as well as 25-50cm while EC was high on 0-40 and 0.60 At the Guangzhou site, acidic levels (pH 0-25cm) indicated minor correlation and soil salinity (EC 25-50cm) also showed minor correlation. The trend was same the at the Changtan forest site where soil salinity showed only minor significant relationship (0-25cm). A percentage assessment of SOC (g/kg) among the forest sites by plot observation showed that Deqing forest site, Changtan and Nanling were well distributed which confers best forest management regimes that yield to good forest soil chemical and physical properties. This study gave scientific insight and boast plant functional nutrient interaction as well as stability towards better agricultural productivity and forest management systems. This is in agreement that good management and less disturbance in forest soils are major component of physical and chemical properties interaction, thereby for effective integrated forest and agricultural management systems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call