Abstract

The limited complexity of self-assembled nanostructures of block copolymers seriously impedes their potential utility in the semiconductor industry. Therefore, the customizability of complex nanostructures has been a long-standing goal for the utilization of directed self-assembly in nanolithography. Herein, we integrated an advanced inverse design algorithm with a well-developed theoretical model to deduce inverse solutions of topographical templates to direct the self-assembly of block copolymers into reproducible target structures. The deduced templates were optimized by finely tuning the input parameters of the inverse design algorithm and through symmetric operation as well as nanopost elimination. More importantly, our developed algorithm has the capability to search inverse solutions of topographical templates for aperiodic nanostructures over exceptionally large areas. These results reveal design rules for guiding templates for the device-oriented nanostructures of block copolymers with prospective applications in nanolithography.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.