Abstract
The honeycomb structure with a negative Poisson's ratio, inspired by the Miura origami unit, exhibits three-dimensional negative Poisson's ratio characteristics and effective energy dissipation performance. This unique property provides significant potential in the field of protection applications. This study aims to comprehensively understand the impact of auxetic and origami structures on the cushioning performance of honeycomb structures. For this purpose, 316 L stainless steel specimens were fabricated using 3D printing technology and subjected to drop hammer impact tests, and the results were verified by finite element simulation. This paper focuses on assessing the deformation mode and energy dissipation performance of origami auxetic honeycomb structures with varying width-to-thickness ratios and folding angles under different impact energy levels. The results indicate that the negative Poisson's ratio origami specimens exhibit higher plateau stress and specific energy absorption compared to their positive and zero Poisson's ratio origami counterparts with the same geometry. In addition, a smaller width-to-thickness ratio and higher input impact energy enhance the cushioning performance of honeycomb structures.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have