Abstract

There is a growing demand for advancing products and renewable technologies worldwide that rely on rare earth elements (REEs), including those directly necessary for a low-carbon energy transition, national security applications, and consumer electronics. This study focuses on current nature-based biological methods (i.e., bioleaching and biosorption) for REEs extraction from electronic wastes (e-wastes) and ore deposits. Comprehensive narrative and systematic reviews of bioleaching and biosorption extraction methods are performed to identify their sustainability challenges and benefits, and highlight the potential pathways that would address the existing gaps. From the narrative review, it is evident that biological methods for REEs extraction are more environmentally friendly than conventional methods currently used in the REE mining industry (e.g., acid leaching and solvent extraction). From the systematic review, it is clear that bioleaching and biosorption research has been a rapidly growing field of interest over the last 10 years, particularly for precious metals extraction (e.g., copper and gold). From both reviews, it is apparent that REEs extraction from domestic ore deposits alone is inadequate, and sustainable REEs recovery from e-wastes is also necessary to meet the growing REEs demand. It is concluded that targeted mixed REEs extraction for specific products can be a potential pathway for sustainable REEs extraction from both ore and e-wastes that would reduce separation costs and emissions from the associated use of harsh chemicals. It is further concluded that nature-based biological REE extraction solutions offer an opportunity to generate significant socio-economic and environmental benefits.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call