Abstract

Tuberculosis (TB) has gone from being a forgotten disease to a modern and recrudescent pathology from past decades. Some clinical problems and challenges associated with conventional TB chemotherapy include poor patient compliance, longer duration of chemotherapy, lesser cell permeability, primary drug resistance, difficulty in maintaining higher drug concentrations at the infected site, and degradation of the drug before reaching the target site. Thus, newer drug delivery approaches involving micrometric or nanometric carriers are needed. These delivery systems should provide advantages over conventional systems by producing optimum effectiveness to the target site, enhanced therapeutic efficacy, uniform distribution of the drug throughout the target site, increased bioavailability and sustainability of the drug, fewer side effects, and increased patient compliance. This article reviews recent updates and fabrication of drug delivery approaches for tuberculosis chemotherapy involving vesicular drug delivery systems (liposomes, niosomes, solid lipid nanoparticles), particulate drug delivery systems (nanoparticles, microparticles, dendrimers), supramolecular drug delivery systems (polymeric micelles), specialized drug delivery systems (nanosuspensions, nanoemulsions, microemulsions, dry powders), complex conjugate drug delivery systems (ISCOMs, cyclodextrin inclusion complexes), and other carrier-based drug delivery systems in order to improve patient outcomes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.