Abstract

Low activity and high cost of electrocatalysts are the major challenge for the commercialization of the direct fuel cells (DFCs) and biofuel cells. In this work, we demonstrate the desirable "clean surfaces" effect of Cu nanocrystals in electrocatalysis. By a new reaction route of Cu2O nanospheres (Cu2O NSs), Cu nanowires (Cu NWs) with high purity and "clean surfaces" are first obtained under mild conditions. Benefiting from the path directing effects and abundant (100) facets, the as-prepared Cu NWs exhibit a lower overpotential to achieve the methanol electro-oxidation reaction (MOR) than that of analogous Cu nanoparticles (Cu NPs). Moreover, the "clean surfaces" provide more available active sites for the efficient transfer of electrons, enabling the Cu NWs to show their enhanced electrocatalytic activity. In the MOR, forward peak current density for the surface-cleaned Cu NWs is 2839 μA cm-2, which is ca. 6.45-fold higher than that of the Cu NWs with residual capping molecules on their surface. The "clean surfaces" effect can also be extended to the glucose electro-oxidation reaction (GOR), and the enhancement in specific surface area activity for the Cu NWs is 11.3-fold. This work enhances the electrocatalytic performance of Cu nanocrystals without the need for additional noble metals, which opens up new avenues for utilizing non-noble metals in the DFC or biofuel cell applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.