Abstract
AbstractDirect electron transfer (DET) is a unique feature of some enzymes. The possibility of DET between enzymes and the electrode surface could pave the way for superior reagentless, noncompartmentised, mediator‐free biofuel cells, as it obviates the need for mediators and allows an efficient transduction of the electrical current. DET is highly beneficial in the development of enzymatic and microbial biofuel cells. In this review article, hemoproteins, which are able to directly transfer electrons to the surfaces of conducting supports, are briefly overviewed and characterised. The main focus is laid on the application of heme‐c containing enzymes in biofuel cell design. Some historical steps and recent developments in biofuel cell design are presented in this article. Various designs of biofuel cells are overviewed. Possible applications of biofuel cells are presented and/or predicted and discussed. Problems and challenges in biofuel cell design and application are identified while possible directions to solve recent problems in biofuel cell development are discussed. The application of enzymatic biofuel cells as model systems and tools for advanced study of bioelectronics' properties of enzymes is predicted.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.