Abstract

Electrochemical CO2 reduction is a beneficial process for converting CO2 into useful hydrocarbons, chemicals, and fuels. Many catalysts have been tested before for CO2 electroreduction however achieving good stability, activity, and selectivity of the required product remains a challenge. In this work, we demonstrate the solvothermal synthesis and characterization of Cu-doped ZIF-8 catalysts with varying Cu+2 doping and applying them in the electrochemical CO2 reduction process. Cu30%ZIF-8 showed the highest current density of -40 mA cm−2 at -2.1 V vs. Ag/AgCl and better selectivity for CH4 and CO compared to previous works on Cu electrodes. This high activity of the Cu-doped ZIF-8 catalyst is because of the crystalline nanostructure of our catalyst with sufficient copper active metal sites and N-content, micro-meso dual-porosity nature of the structure, and broad surface area of zeolite imidazole framework to work on.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.