Abstract
Control of the formation and stability of reverted austenite is critical in achieving a favorable combination of strength, ductility, and toughness in high-strength steels. In this work, the effects of Cu precipitation on the austenite reversion and mechanical properties of maraging stainless steels were investigated by atom probe tomography, transmission electron microscopy, and mechanical tests. Our results indicate that Cu accelerates the austenite reversion kinetics in two manners: first, Cu, as an austenite stabilizer, increases the equilibrium austenite fraction and hence enhances the chemical driving force for the austenite formation, and second, Cu-rich nanoprecipitates promote the austenite reversion by serving as heterogeneous nucleation sites and providing Ni-enriched chemical conditions through interfacial segregation. In addition, the Cu precipitation hardening compensates the strength drop induced by the formation of soft reverted austenite. During tensile deformation, the metastable reverted austenite transforms to martensite, which substantially improves the ductility and toughness through a transformation-induced plasticity (TRIP) effect. The Cu-added maraging stainless steel exhibits a superior combination of a yield strength of ∼1.3 GPa, an elongation of ∼15%, and an impact toughness of ∼58 J.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.