Abstract

Controlling the amount of reverted austenite at room temperature allows for tailoring of mechanical properties in supermartensitic stainless steels. The austenite reversion and stabilization occurs during inter-critical tempering through partitioning of austenite-stabilizing elements. The degree of partitioning greatly depends on the reversion temperature, which dictates the local equilibrium conditions. Atom probe tomography and energy dispersive spectroscopy in transmission electron microscopy were used to study the austenite reversion mechanism in terms of the elemental distribution of austenite-stabilizing, ferrite-stabilizing and carbide forming elements. Synchrotron X-ray diffraction confirmed that the austenite equilibrium phase fraction was reached after 2.5h of isothermal reversion at 625°C, allowing for direct comparison with thermodynamic and kinetic calculations. However, such soaking time was not enough to produce compositional homogenization in the reverted austenite. The austenite reversion and stabilization mechanism was related mainly to strong partitioning of Ni. Negligible partitioning of Cr, Mo, Si and Ti were observed. Instead, these elements were strongly segregated at the reverted austenite/martensite interfaces. Carbon and Ti played a secondary role in the austenite stabilization through the precipitation of nano-sized Ti (C,N) with partial substitution of Ti by Mo. Virtually carbon-free austenite and martensite were observed away from the interfaces and precipitates.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.