Abstract
To mathematically represent crowd jumping loads, the features of the jumping load of each person, including pulse curve patterns, pulse interval sequences, and pulse energy sequences are considered. These features are essentially highdimensional random variables. However, they have to be represented in a practically simplified model due to the lack of mathematical tools. The recently emerged generative adversarial networks (GANs) can model high-dimensional random variables well, as demonstrated in image synthesis and text generation. Therefore, this study adopts GANs as a new method for modelling crowd jumping loads. Conditional GANs (CGANs) combined with Wasserstein GANs with gradient penalty (WGANs*GP) are used in pulse curve pattern modelling, where a multi-layer perceptron and convolutional neural network are selected as the discriminator and generator, respectively. For the pulse energy sequence and pulse interval sequence modelling, similar GANs are used, where recurrent neural networks are selected as both the generator and discriminator. Finally, crowd jumping loads can be simulated by connected the pulse samples based on the pulse energy sequence samples and interval sequence samples, generated by the three proposed GANs. The experimental individual and crowd jumping load records are utilized in training GANs to ensure their output can simulate real load records well. Finally, the feasibility of the proposed GANs was verified by comparing the measured structural responses of an existing floor to the predicted structural responses.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have