Abstract

A new hysteresis model based on curve fitting method is presented in this work to portray the greatly nonlinear and hysteretic relationships between shear force and displacement responses of the magnetorheological (MR) elastomer base isolator. Compared with classical hysteresis models such as Bouc-Wen or LuGre friction model, the proposed model combines the hyperbolic sine function and Gaussian function to model the hysteretic loops of the device responses, contributing to a great decline of model parameters. Then, an improved fruit fly optimization algorithm (FOA) is proposed to optimize the model parameters, in which a self-adaptive step is employed rather than the fixed step to balance the global and local optimum search abilities of algorithm. Finally, the experimental results of the device under both harmonic and random excitations are used to verify the performance of the proposed hybrid model and parameter identification algorithm with the satisfactory results.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.