Abstract

Geometry scaling increases the relative effect of coupling capacitances on performance, power, and noise so that they need to be carefully taken into account during process development, characterization, and monitoring. In the last decade, charge-based capacitance measurements (CBCMs) have been widely used to estimate on-chip wiring and coupling capacitances because of their accuracy and simplicity. We provide a thorough theoretical and experimental study of CBCMs applied to the selective extraction of cross-coupling capacitances. We take a historical perspective starting from the original CBCM approach proposed by Chen in 1996, and we present a new technique for crosstalk-based capacitance measurements (CTCMs). CTCMs improve the accuracy and usability of CBCMs while reducing the complexity of the test structures. We present the theory of CTCM, we provide experimental results demonstrating its improved accuracy, and we discuss its application to a wide range of process monitoring and testing tasks. Experimental results are used throughout the paper to support the discussion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.