Abstract

Image-based diagnosis routinely depends on more that one image modality for exploiting the complementary information they provide. However, it is not always possible to obtain images from a secondary modality for several reasons such as cost, degree of invasiveness and non-availability of scanners. Three-dimensional (3D) morphable models have made a significant contribution to the field of medical imaging for feature-based analysis. Here we extend their use to encode 3D volumetric imaging modalities. Specifically, we build a Gaussian Process (GP) over transformations establishing anatomical correspondence between training images within a modality. Given, two different modalities, the GP's eigenspace (latent space) can then be used to provide a parametric representation of each image modality, and we provide an operator for cross-domain translation between the two. We show that the latent space yields samples that are representative of the encoded modality. We also demonstrate that a 3D volumetric image can be efficiently encoded in latent space and transferred to synthesize the corresponding image in another modality. The framework called VIGPM can be extended by designing a fitting process to learn an observation in a given modality and performing cross-modality synthesis. Clinical Relevance- The proposed method provides a way to access a multi modality image from one modality. Both the source and synthetic modalities are in anatomical correspondence giving access to registered complementary information.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.