Abstract
Radiation resistant inorganic materials emitting cross-luminescence are one of the most prospective candidates for new generation ultrafast detectors for medical tomography. Radiative transitions leading to cross-luminescence occur between valence and core states, and therefore calculations of the electronic structure of doped materials can explain ultrafast transitions and predict new cross-luminescent materials. In current work we demonstrate results of ab initio calculations of undoped and doped BaF2 by means of hybrid density functional theory. As a result of the work, the density of states (DOS) for nominally pure BaF2 and a whole series of BaF2 doped with various trivalent ions were obtained. The positions of the core energy levels of dopant ions lying between the Ba(5p) zone and the F(2s) zone, as well local geometries and formation energies were calculated. Our calculations show that the 5p states of impurity ions can be located below the 5p zone of barium by several eV. This opens up opportunities for transitions from the core 5p Ba zone to impurity 5p states, which might be involved in experimentally observed appearance of an ultrafast component in doped BaF2.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have