Abstract

The IEEE 802.15.4 standard is recognized as one of the most successful for short-range low-rate wireless communications and is used in Internet of Things (IoT) applications. To improve the performance of wireless networks, interest in protocols that rely on interaction between different layers has increased. Cross-layer design has become an issue in wireless communication systems as it can improve the capacity of wireless networks by optimizing cooperation between multiple layers that constitute network systems. Power efficiency and network scalability must be addressed to spread IoT. In multi-hop networks, many devices share wireless media and are geographically distributed; consequently, efficient medium access control (MAC) and routing protocols are required to mitigate interference and improve reliability. Cross-layer design is a novel network design approach to support flexible layer techniques in IoT. We propose a cross-layer protocol for the MAC layer and routing layer to satisfy the requirements of various networks. The proposed scheme enables scalable and reliable mesh networking using the IEEE 802.15.4 standard and provides robust connectivity and efficient path discovery procedures. It also proposes a novel address-allocation technique to improve address-allocation methods that cannot support large sensor networks. Simulation results indicate that the proposed scheme could improve reliability and reduce end-to-end delay.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call