Abstract
In a recent paper we showed that the collapse to a black hole in one-parameter families of initial data for massless, minimally coupled scalar fields in spherically symmetric semi-classical loop quantum gravity exhibited a universal mass scaling similar to the one in classical general relativity. In particular, no evidence of a mass gap appeared as had been suggested by previous studies. The lack of a mass gap indicated the possible existence of a self-similar critical solution as in general relativity. Here we provide further evidence for its existence. Using an adaptive mesh refinement code, we show that "echoes" arise as a result of the discrete self-similarity in space-time. We also show the existence of "wiggles" in the mass scaling relation, as in the classical theory. The results from the semi-classical theory agree well with those of classical general relativity unless one takes unrealistically large values for the polymerization parameter.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have