Abstract
We study the collapse in spherical symmetry of a massless scalar field minimally coupled to gravity using the semiclassical equations that are expected from loop quantum gravity. We find the critical behavior of the mass as a function of the parameters of the initial data similar to that found by Choptuik in classical general relativity for a large set of initial data and values of the polymerization parameter. Contrary to wide expectations for quantum gravity, our semiclassical field equations have an exact scale invariance, as do the classical field equations. As one would then expect, we numerically find that the phase transition is second order: again, as in the classical case.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.