Abstract
AbstractA critical layer thickness study of strained GaAs/InGaAs and AlGaAs/GaAsP quantum wells (QWs) grown by atmospheric pressure organometallic chemical vapor deposition (OMCVD) is reported. Characterization by conventional photoluminescence (PL), photoluminescence excitation (PLE) spectroscopy, optical microscopy, and x-ray diffraction suggests that partial or regional relaxation begins to occur at critical thicknesses predicted by the force-balance model. To test the stability of strained quantum wells with well width near or exceeding the predicted critical thickness, annealing up to 850°C for ten minutes was carried out. No sign of degradation or complete relaxation of the QW layers was observed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.