Abstract

Emerging contaminants from wastewater effluent samples were analysed, using posttarget and nontarget analysis techniques. The samples were analysed with an ultra performance liquid chromatograph-time-of-flight mass spectrometer (UPLC-TOF-MS), and the resulting data were processed with commercial deconvolution software. The method works well for posttarget analysis with prior information about the retention times of the compounds of interest. With positive polarity, 63 of 66 compounds and with negative polarity, 18 of 20 compounds were correctly identified in a spiked sample, while two compounds of a total of 88 fell out of the mass range. Furthermore, a four-stage process for identification was developed for the posttarget analysis lacking the retention time data. In the process, the number of candidate compounds was reduced by using the accurate mass of selected compounds in two steps (stages 1 and 2), structure-property relationships (stage 3) and isotope patterns of the analytes (stage 4). The process developed was validated by analysing wastewater samples spiked with 88 compounds. This procedure can be used to gain a preliminary indication of the presence of certain analytes in the samples. Nontarget analysis was tested by applying a theoretical mass spectra library for a wastewater sample spiked with six pharmaceuticals. The results showed a high number of false identifications. In addition, manual processing of the data was considered laborious and ineffective. Finally, the posttarget analysis was applied to a real wastewater sample. The analysis revealed the presence of six compounds that were afterwards confirmed with standard compounds as being correct. Three psycholeptics (nordiazepam, oxazepam and temazepam) could be tentatively identified, using the identification process developed. Posttarget analysis with UPLC-TOF-MS proved to be a promising method for analysing wastewater samples, while we concluded that the software for nontarget analysis will need improvement before it can be used in environmental analytical work with LC-TOF-MS systems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.