Abstract

In this study, n-type SiC Schottky barrier diodes (SBDs) with various doping concentrations (Nd=4×1015–1×1019cm−3) were fabricated, and their forward and reverse current–voltage (I–V) characteristics were analyzed focusing on tunneling current. Numerical calculation with the fundamental formula of tunneling current gives good agreement with experimental forward and reverse I–V curves in the heavily doped SiC SBDs (Nd>2×1017cm−3). The analysis of the energy where electron tunneling most frequently occurs revealed that field emission (FE) tunneling dominates conduction instead of thermionic field emission (TFE) under a higher electric field in reverse-biased heavily doped SiC SBDs, while forward I–V characteristics are described only by TFE. In addition, the critical electric field for the TFE–FE transition is quantitatively clarified by carefully considering the sharply changing electric field distribution in SiC with a high donor concentration.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.