Abstract

We propose a simple microscopic model for arching phenomena at bottlenecks. The dynamics of particles in front of a bottleneck is described by a one-dimensional stochastic cellular automaton on a semicircular geometry. The model reproduces oscillation phenomena due to the formation and collapsing of arches. It predicts the existence of a critical bottleneck size for continuous particle flows. The dependence of the jamming probability on the system size is approximated by the Gompertz function. The analytical results are in good agreement with simulations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.