Abstract
CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) has transformed molecular biology through its precise gene-editing capabilities. Beyond its initial applications in genetic modification, CRISPR has emerged as a powerful tool in diagnostics and biosensing. This review explores its transition from genome editing to innovative detection methods, including nucleic acid identification, single nucleotide polymorphism (SNP) analysis, and protein sensing. Advanced technologies such as SHERLOCK and DETECTR demonstrate CRISPR's potential for point-of-care diagnostics, enabling rapid and highly sensitive detection. The integration of chemical modifications, CRISPR-Chip technology, and enzymatic systems like Cas12a and Cas13a enhances signal amplification and detection efficiency. These advancements promise decentralized, real-time diagnostic solutions with significant implications for global healthcare. Furthermore, the fusion of CRISPR with artificial intelligence and digital health platforms is paving the way for more accessible, cost-effective, and scalable diagnostic approaches, ultimately revolutionizing precision medicine.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have