Abstract

Herein, we propose a sensitive fluorescent assay for organophosphorus pesticides (OPs) detection based on a novel strategy of activating the CRISPR-Cas12a system. Specifically, acetylcholinesterase (AChE) hydrolyzes acetylthiocholine into thiocholine (TCh). Subsequently, TCh induces the degradation of MnO2 nanosheets and generates sufficient Mn2+ ions to activate the Mn2+-dependent DNAzyme. Then, as the catalytic product of activated DNAzyme, the short DNA strand activates the CRISPR-Cas12a system to cleave the fluorophore-quencher-labeled DNA reporter (FQ) probe effectively; thus, increasing the fluorescence intensity (FI) in the solution. However, in the presence of OPs, the activity of AChE is suppressed, resulting in a decrease in FI. Under optimized conditions, the limits of detection for paraoxon, dichlorvos, and demeton were 270, 406, and 218 pg/mL, respectively. Benefiting from the outstanding MnO2 nanosheets properties and three rounds of enzymatic signal amplification, the proposed fluorescence assay holds great potential for the detection of OPs in agricultural products.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.